Lindenii Project Forge
Login

hare-aio

Asynchronous I/O event loops for Hare

Hi… I am well aware that this diff view is very suboptimal. It will be fixed when the refactored server comes along!

Commit info
ID
67a646a8671c0966290decaf947a661641cb89d3
Author
Runxi Yu <me@runxiyu.org>
Author date
Mon, 29 Sep 2025 15:07:42 +0800
Committer
Runxi Yu <me@runxiyu.org>
Committer date
Mon, 29 Sep 2025 22:14:36 +0800
Actions
More consistent API
The io_uring module provides access to Linux's io_uring subsystem. The
documentation for this module is somewhat scarce: users are presumed to be
familiar with io_uring. Thus, it is recommended that a reading of this module is
paired with the Linux documentation, which may be available from your local
liburing package under the io_uring_setup, io_uring_enter, and io_uring_register
man pages.
The io_uring module provides access to Linux's io_uring subsystem.

The documentation for this module is somewhat scarce: users are presumed to be
familiar with io_uring. Thus, it is recommended that a reading of this module
is paired with the Linux documentation, which may be available from your local
liburing package under the io_uring_setup, io_uring_enter, and
io_uring_register man pages.

This module may be considered to be roughly equivalent to liburing's
abstraction layer.
// License: MPL-2.0
// (c) 2021 Alexey Yerin <yyp@disroot.org>
// (c) 2021 Drew DeVault <sir@cmpwn.com>
// (c) 2021 Eyal Sawady <ecs@d2evs.net>
use errors;
use rt;

// Advances the completion queue by N items.
export fn cq_advance(ring: *io_uring, n: uint) void = {
	*ring.cq.khead = *ring.cq.khead + n;
};

// Call after processing a [[cqe]]. The cqe is returned to the pool and cannot
// be used by the application again.
export fn cqe_seen(ring: *io_uring, cqe: *cqe) void = cq_advance(ring, 1);

// Waits until a CQE is available, then returns it. The caller must pass the
// returned CQE to [[cqe_seen]] to advance the queue.
export fn wait(ring: *io_uring) (*cqe | error) = {
export fn cqe_wait(ring: *io_uring) (*cqe | error) = {
	match (get_cqe(ring, 0, 1)) {
	case let err: error =>
		return err;
	case let cq: nullable *cqe =>
		return cq as *cqe; // XXX: Correct?
	};
};

// Peeks the next CQE from the queue and returns it, or null if none are
// pending. The caller must pass the returned CQE to [[cqe_seen]] to advance the
// queue.
export fn peek(ring: *io_uring) (nullable *cqe | error) = get_cqe(ring, 0, 0);
export fn cqe_peek(ring: *io_uring) (nullable *cqe | error) = get_cqe(ring, 0, 0);

// Returns the result of a [[cqe]], or an error if unsuccessful.
export fn result(cqe: *cqe) (int | error) = {
export fn cqe_result(cqe: *cqe) (int | error) = {
	if (cqe.res >= 0) {
		return cqe.res;
	};
	switch (-cqe.res) {
	case rt::ENOBUFS =>
		return nobuffers;
	case =>
		return errors::errno(rt::wrap_errno(-cqe.res));
		return errors::errno(-cqe.res: rt::errno);
	};
};

// Gets the user data field of a [[cqe]]. See [[set_user]] for the corresponding
// Gets the user data field of a [[cqe]]. See [[sqe_set_data]] for the corresponding
// SQE function.
export fn get_user(cqe: *cqe) nullable *void =
	cqe.user_data: uintptr: nullable *void;
export fn cqe_get_data(cqe: *cqe) nullable *opaque =
	cqe.user_data: uintptr: nullable *opaque;

// Returns the buffer ID used for this [[cqe]] in combination with
// [[set_buffer_select]]. Aborts the program if this CQE was not configured to
// use a buffer pool.
export fn get_buffer_id(cqe: *cqe) u16 = {
export fn cqe_get_buffer_id(cqe: *cqe) u16 = {
	// TODO: Handle ENOBUFS
	assert(cqe.flags & cqe_flags::F_BUFFER > 0,
		"get_buffer_id called for CQE without buffer");
	return (cqe.flags: u32 >> CQE_BUFFER_SHIFT): u16;
};

fn peek_cqe(ring: *io_uring) (nullable *cqe, uint) = {
fn peek_cqe_(ring: *io_uring) (nullable *cqe, uint) = {
	let head = *ring.cq.khead;
	let tail = *ring.cq.ktail;
	let mask = *ring.cq.kring_mask;
	let avail = tail - head;
	if (avail == 0) {
		return (null, 0);
	};
	return (&ring.cq.cqes[head & mask], avail);
};

fn get_cqe(
	ring: *io_uring,
	submit: uint,
	wait: uint,
) (nullable *cqe | error) = {
	let cq: nullable *cqe = null;
	for (cq == null) {
		let enter = false, overflow = false;
		let flags = enter_flags::NONE;

		// TODO: tuple destructuring
		let tup = peek_cqe(ring);
		let tup = peek_cqe_(ring);
		let avail = tup.1;
		cq = tup.0;

		if (cq == null && wait == 0 && submit == 0) {
			if (!needs_flush(ring)) {
				return null;
			};
			overflow = true;
		};
		if (wait > avail || overflow) {
			flags |= enter_flags::GETEVENTS;
			enter = true;
		};
		if (submit > 0) {
			needs_enter(ring, &flags);
			enter = true;
		};
		if (!enter) {
			break;
		};

		match (rt::io_uring_enter(ring.fd,
			submit, wait, flags: uint, null)) {
		case let err: rt::errno =>
			return errors::errno(err);
		case let n: uint =>
			submit -= n;
		};
	};
	return cq;
};
// License: MPL-2.0
// (c) 2021 Alexey Yerin <yyp@disroot.org>
// (c) 2021 Drew DeVault <sir@cmpwn.com>
// (c) 2021 Eyal Sawady <ecs@d2evs.net>
use errors;
use rt;

// TODO: Atomics

// Returns the next available [[sqe]] for this [[io_uring]], or null if the
// queue is full.
export fn get_sqe(ring: *io_uring) nullable *sqe = {
export fn ring_get_sqe(ring: *io_uring) nullable *sqe = {
	const sq = &ring.sq;
	const head = *sq.khead, next = sq.sqe_tail + 1;
	if (next - head <= *sq.kring_entries) {
		let sqe = &sq.sqes[sq.sqe_tail & *sq.kring_mask];
		sq.sqe_tail = next;
		return sqe;
	};
	return null;
};

// Returns the next available [[sqe]] for this [[io_uring]], or aborts the
// program if the queue is full.
export fn must_get_sqe(ring: *io_uring) *sqe = {
	match (get_sqe(ring)) {
	case null =>
		abort("I/O queue full");
	case let sq: *sqe =>
		return sq;
	};
};

fn needs_enter(ring: *io_uring, flags: *enter_flags) bool = {
	if (ring.flags & setup_flags::IOPOLL != setup_flags::IOPOLL) {
	if (ring.flags & ring_setup_flags::IOPOLL != ring_setup_flags::IOPOLL) {
		return true;
	};

	if (*ring.sq.kflags & sqring_flags::NEED_WAKEUP == sqring_flags::NEED_WAKEUP) {
	if (*ring.sq.kflags & sq_flags::NEED_WAKEUP == sq_flags::NEED_WAKEUP) {
		*flags |= enter_flags::SQ_WAKEUP;
		return true;
	};

	return false;
};

fn needs_flush(ring: *io_uring) bool =
	*ring.sq.kflags & sqring_flags::CQ_OVERFLOW == sqring_flags::CQ_OVERFLOW;
	*ring.sq.kflags & sq_flags::CQ_OVERFLOW == sq_flags::CQ_OVERFLOW;

// Submits queued I/O asynchronously. Returns the number of submissions accepted
// by the kernel.
export fn submit(ring: *io_uring) (uint | error) =
export fn ring_submit(ring: *io_uring) (uint | error) =
	do_submit(ring, flush_sq(ring), 0u);

// Submits queued I/O asynchronously and blocks until at least "wait" events are
// complete. If setup_flags::IOPOLL was configured for this ring, the meaning of
// complete. If ring_setup_flags::IOPOLL was configured for this ring, the meaning of
// the "wait" parameter is different: a non-zero value will block until at least
// one event is completed.
//
// Returns the number of submissions accepted by the kernel.
export fn submit_wait(ring: *io_uring, wait: uint) (uint | error) =
export fn ring_submit_and_wait(ring: *io_uring, wait: uint) (uint | error) =
	do_submit(ring, flush_sq(ring), wait);

fn flush_sq(ring: *io_uring) uint = {
	let sq = &ring.sq;
	let ktail = *sq.ktail;
	const mask = *sq.kring_mask;

	if (sq.sqe_head == sq.sqe_tail) {
		return ktail - *sq.khead;
	};

	for (let n = sq.sqe_tail - sq.sqe_head; n > 0; n -= 1u) {
		sq.array[ktail & mask] = sq.sqe_head & mask;
		ktail += 1u;
		sq.sqe_head += 1u;
	};

	*sq.ktail = ktail;
	return ktail - *sq.khead;
};

fn do_submit(
	ring: *io_uring,
	submitted: uint,
	wait: uint,
) (uint | error) = {
	let flags = enter_flags::GETEVENTS;
	if (needs_enter(ring, &flags) || wait != 0) {
		match (rt::io_uring_enter(ring.fd,
				submitted, wait, flags, null)) {
		case let err: rt::errno =>
			return errors::errno(err);
		case let n: uint =>
			return n;
		};
	} else {
		return submitted;
	};
};
// License: MPL-2.0
// (c) 2021 Drew DeVault <sir@cmpwn.com>
// (c) 2021 Eyal Sawady <ecs@d2evs.net>
use errors;
use rt;
use types;

// Registers a set of fixed buffers with an [[io_uring]]. Note that you must
// call [[unregister_buffers]] before registering a new set of buffers (even if
// some of them have similar addresses to the old set). The buffers must be
// anonymous, non-file-backed memory (e.g. the kind returned by alloc or
// rt::mmap).
export fn register_buffers(ring: *io_uring, iov: []rt::iovec) (void | error) = {
export fn ring_register_buffers(ring: *io_uring, iov: []rt::iovec) (void | error) = {
	assert(len(iov) <= types::UINT_MAX);
	match (rt::io_uring_register(ring.fd, regop::REGISTER_BUFFERS,
	match (rt::io_uring_register(ring.fd, ring_register_op::REGISTER_BUFFERS,
			iov: *[*]rt::iovec, len(iov): uint)) {
	case let err: rt::errno =>
		return errors::errno(err);
	case int => void;
	};
};

// Unregisters all fixed buffers associated with an [[io_uring]].
export fn unregister_buffers(ring: *io_uring) (void | error) = {
export fn ring_unregister_buffers(ring: *io_uring) (void | error) = {
	match (rt::io_uring_register(ring.fd,
			regop::UNREGISTER_BUFFERS, null, 0)) {
			ring_register_op::UNREGISTER_BUFFERS, null, 0)) {
	case let err: rt::errno =>
		return errors::errno(err);
	case int => void;
	};
};

// Registers a set of file descriptors with an [[io_uring]]. The set of files
// may be sparse, meaning that some are set to -1, to be updated later using
// [[register_files_update]].
export fn register_files(ring: *io_uring, files: []int) (void | error) = {
export fn ring_register_files(ring: *io_uring, files: []int) (void | error) = {
	assert(len(files) <= types::UINT_MAX);
	match (rt::io_uring_register(ring.fd, regop::REGISTER_FILES,
	match (rt::io_uring_register(ring.fd, ring_register_op::REGISTER_FILES,
			files: *[*]int, len(files): uint)) {
	case let err: rt::errno =>
		return errors::errno(err);
	case int => void;
	};
};

// Applies a set of [[files_update]]s to the set of files registered with an
// Applies a set of [[ring_files_update]]s to the set of files registered with an
// [[io_uring]].
export fn register_files_update(
export fn ring_register_files_update(
	ring: *io_uring,
	updates: []files_update,
	updates: []ring_files_update,
) (void | error) = {
	assert(len(updates) <= types::UINT_MAX);
	match (rt::io_uring_register(ring.fd, regop::REGISTER_FILES_UPDATE,
			updates: *[*]files_update, len(updates): uint)) {
	match (rt::io_uring_register(ring.fd, ring_register_op::REGISTER_FILES_UPDATE,
			updates: *[*]ring_files_update, len(updates): uint)) {
	case let err: rt::errno =>
		return errors::errno(err);
	case int => void;
	};
};

// Unregisters all files associated with an [[io_uring]].
export fn unregister_files(ring: *io_uring) (void | error) = {
export fn ring_unregister_files(ring: *io_uring) (void | error) = {
	match (rt::io_uring_register(ring.fd,
			regop::UNREGISTER_FILES, null, 0)) {
			ring_register_op::UNREGISTER_FILES, null, 0)) {
	case let err: rt::errno =>
		return errors::errno(err);
	case int => void;
	};
};

// Registers an eventfd(2) with this [[io_uring]] to be notified of completion
// events.
export fn register_eventfd(ring: *io_uring, fd: int) (void | error) = {
export fn ring_register_eventfd(ring: *io_uring, fd: int) (void | error) = {
	match (rt::io_uring_register(ring.fd,
			regop::REGISTER_EVENTFD, &fd, 1)) {
			ring_register_op::REGISTER_EVENTFD, &fd, 1)) {
	case let err: rt::errno =>
		return errors::errno(err);
	case int => void;
	};
};

// Similar to [[register_eventfd]], but only notifies of events which complet
// asyncronously.
export fn register_eventfd_async(ring: *io_uring, fd: int) (void | error) = {
export fn ring_register_eventfd_async(ring: *io_uring, fd: int) (void | error) = {
	match (rt::io_uring_register(ring.fd,
			regop::REGISTER_EVENTFD_ASYNC, &fd, 1)) {
			ring_register_op::REGISTER_EVENTFD_ASYNC, &fd, 1)) {
	case let err: rt::errno =>
		return errors::errno(err);
	case int => void;
	};
};

// Unregisters the eventfd(2) associated with this [[io_uring]].
export fn unregister_eventfd(ring: *io_uring) (void | error) = {
export fn ring_unregister_eventfd(ring: *io_uring) (void | error) = {
	match (rt::io_uring_register(ring.fd,
			regop::UNREGISTER_EVENTFD, null, 0)) {
			ring_register_op::UNREGISTER_EVENTFD, null, 0)) {
	case let err: rt::errno =>
		return errors::errno(err);
	case int => void;
	};
};

// XXX: This interface is pretty bad. It would be nice to improve on it
// a bit before making it part of the API.
//export fn register_probe(ring: *io_uring, out: *probe, nops: size) void = {
//	assert(nops * size(probe_op) <= types::UINT_MAX);
//	match (rt::io_uring_register(ring.fd, regop::REGISTER_PROBE,
//	match (rt::io_uring_register(ring.fd, ring_register_op::REGISTER_PROBE,
//			out, (nops * size(probe)): uint)) {
//		rt::errno => abort("Unexpected io_uring REGISTER_PROBE error"),
//		void => void,
//	};
//};

// Registers the current process's credentials as a personality with an
// [[io_uring]], returning an ID. Set the personality field of an [[sqe]] to use
// that personality for an I/O submission.
export fn register_personality(ring: *io_uring) int = {
export fn ring_register_personality(ring: *io_uring) int = {
	match (rt::io_uring_register(ring.fd,
			regop::REGISTER_PERSONALITY, null, 0)) {
			ring_register_op::REGISTER_PERSONALITY, null, 0)) {
	case rt::errno =>
		abort("Unexpected io_uring REGISTER_PERSONALITY error");
	case let i: int =>
		return i;
	};
};

// Unregisters a personality previously configured with
// [[register_personality]].
export fn unregister_personality(ring: *io_uring, id: int) (void | error) = {
export fn ring_unregister_personality(ring: *io_uring, id: int) (void | error) = {
	match (rt::io_uring_register(ring.fd,
			regop::UNREGISTER_PERSONALITY, null, id: uint)) {
			ring_register_op::UNREGISTER_PERSONALITY, null, id: uint)) {
	case let err: rt::errno =>
		return errors::errno(err);
	case int => void;
	};
};

// Enables submissions for an [[io_uring]] which was started in the disabled
// state via [[setup_flags::R_DISABLED]]. Future access to this io_uring is
// state via [[ring_setup_flags::R_DISABLED]]. Future access to this io_uring is
// subject to any configured restrictions.
export fn register_enable_rings(ring: *io_uring) (void | error) = {
export fn ring_register_enable(ring: *io_uring) (void | error) = {
	match (rt::io_uring_register(ring.fd,
			regop::REGISTER_ENABLE_RINGS, null, 0)) {
			ring_register_op::REGISTER_ENABLE_RINGS, null, 0)) {
	case let err: rt::errno =>
		return errors::errno(err);
	case int => void;
	};
};

// Registers a restriction for this [[io_uring]], limiting the kinds of future
// registrations and I/O submissions which are permitted for it. This is only
// accepted if the [[io_uring]] was set up in a disabled state via
// [[setup_flags::R_DISABLED]].
export fn register_restrictions(ring: *io_uring, res: []restriction) (void | error) = {
// [[ring_setup_flags::R_DISABLED]].
export fn ring_register_restrictions(ring: *io_uring, res: []ring_register_restriction_details) (void | error) = {
	assert(len(res) < types::UINT_MAX);
	match (rt::io_uring_register(ring.fd, regop::REGISTER_RESTRICTIONS,
			res: *[*]restriction, len(res): uint)) {
	match (rt::io_uring_register(ring.fd, ring_register_op::REGISTER_RESTRICTIONS,
			res: *[*]ring_register_restriction_details, len(res): uint)) {
	case let err: rt::errno =>
		return errors::errno(err);
	case int => void;
	};
};
// License: MPL-2.0
// (c) 2021 Drew DeVault <sir@cmpwn.com>
// (c) 2021 Eyal Sawady <ecs@d2evs.net>
use errors;
use rt;

// Sets up an io_uring. The params parameter must be initialized with the
// desired flags, sq_thread_cpu, and sq_thread_idle parameters; the remaining
// fields are initialized by the kernel.
export fn setup(entries: u32, params: *params) (io_uring | error) = {
	const fd = match (rt::io_uring_setup(entries, params)) {
export fn ring_init(entries: u32, params: *ring_params) (io_uring | error) = {
	const fd = match (rt::io_uring_setup(entries, params: *rt::io_uring_params)) {
	case let err: rt::errno =>
		return errors::errno(err);
	case let fd: int =>
		yield fd;
	};

	let uring = io_uring {
		sq = sq { ... },
		cq = cq { ... },
		sq = sq {
			khead = null: *uint,
			ktail = null: *uint,
			kring_mask = null: *uint,
			kring_entries = null: *uint,
			kflags = null: *sq_flags,
			kdropped = null: *uint,
			array = null: *[*]uint,
			sqes = null: *[*]sqe,
			sqe_head = 0: uint,
			sqe_tail = 0: uint,
			ring_sz = 0: size,
			ring_ptr = null: *opaque,
		},
		cq = cq {
			khead = null: *uint,
			ktail = null: *uint,
			kring_mask = null: *uint,
			kring_entries = null: *uint,
			kflags = null: *cq_flags,
			koverflow = null: *uint,
			cqes = null: *[*]cqe,
			ring_sz = 0: size,
			ring_ptr = null: *opaque,
		},
		fd = fd,
		flags = params.flags,
		features = params.features,
	};
	let sq = &uring.sq, cq = &uring.cq;

	sq.ring_sz = params.sq_off.array + params.sq_entries * size(uint);
	cq.ring_sz = params.cq_off.cqes + params.cq_entries * size(cqe);

	if (uring.features & features::SINGLE_MMAP == features::SINGLE_MMAP) {
	if (uring.features & ring_features::SINGLE_MMAP == ring_features::SINGLE_MMAP) {
		if (cq.ring_sz > sq.ring_sz) {
			sq.ring_sz = cq.ring_sz;
		};
		cq.ring_sz = sq.ring_sz;
	};

	sq.ring_ptr = match (rt::mmap(null,
			params.sq_off.array + entries * size(u32),
			rt::PROT_READ | rt::PROT_WRITE,
			rt::MAP_SHARED | rt::MAP_POPULATE,
			fd, OFF_SQ_RING)) {
	case let err: rt::errno =>
		return errors::errno(err);
	case let ptr: *void =>
	case let ptr: *opaque =>
		yield ptr;
	};

	cq.ring_ptr = if (uring.features & features::SINGLE_MMAP == features::SINGLE_MMAP) {
	cq.ring_ptr = if (uring.features & ring_features::SINGLE_MMAP == ring_features::SINGLE_MMAP) {
		yield sq.ring_ptr;
	} else match (rt::mmap(null, cq.ring_sz,
			rt::PROT_READ | rt::PROT_WRITE,
			rt::MAP_SHARED | rt::MAP_POPULATE,
			fd, OFF_CQ_RING)) {
	case let err: rt::errno =>
		return errors::errno(err);
	case let ptr: *void =>
	case let ptr: *opaque =>
		yield ptr;
	};

	const ring_ptr = sq.ring_ptr: uintptr;
	sq.khead = (ring_ptr + params.sq_off.head: uintptr): *uint;
	sq.ktail = (ring_ptr + params.sq_off.tail: uintptr): *uint;
	sq.kring_mask = (ring_ptr + params.sq_off.ring_mask: uintptr): *uint;
	sq.kring_entries = (ring_ptr + params.sq_off.ring_entries: uintptr): *uint;
	sq.kflags = (ring_ptr + params.sq_off.flags: uintptr): *sqring_flags;
	sq.kflags = (ring_ptr + params.sq_off.flags: uintptr): *sq_flags;
	sq.kdropped = (ring_ptr + params.sq_off.dropped: uintptr): *uint;
	sq.array = (ring_ptr + params.sq_off.array: uintptr): *[*]uint;
	sq.sqes = match (rt::mmap(null,
			params.sq_entries * size(sqe),
			rt::PROT_READ | rt::PROT_WRITE,
			rt::MAP_SHARED | rt::MAP_POPULATE,
			fd, OFF_SQES)) {
	case let err: rt::errno =>
		return errors::errno(err);
	case let ptr: *void =>
	case let ptr: *opaque =>
		yield ptr: *[*]sqe;
	};

	const ring_ptr = cq.ring_ptr: uintptr;
	cq.khead = (ring_ptr + params.cq_off.head: uintptr): *uint;
	cq.ktail = (ring_ptr + params.cq_off.tail: uintptr): *uint;
	cq.kring_mask = (ring_ptr + params.cq_off.ring_mask: uintptr): *uint;
	cq.kring_entries = (ring_ptr + params.cq_off.ring_entries: uintptr): *uint;
	cq.koverflow = (ring_ptr + params.cq_off.overflow: uintptr): *uint;
	cq.cqes = (ring_ptr + params.cq_off.cqes: uintptr): *[*]cqe;

	if (params.cq_off.flags != 0) {
		cq.kflags = (ring_ptr + params.cq_off.flags: uintptr): *cqring_flags;
		cq.kflags = (ring_ptr + params.cq_off.flags: uintptr): *cq_flags;
	};

	return uring;
};

// Frees state associated with an [[io_uring]].
export fn finish(ring: *io_uring) void = {
export fn ring_exit(ring: *io_uring) void = {
	let sq = &ring.sq, cq = &ring.cq;
	rt::munmap(sq.ring_ptr, sq.ring_sz): void;
	if (cq.ring_ptr != null: *void && cq.ring_ptr != sq.ring_ptr) {
	if (cq.ring_ptr != null: *opaque && cq.ring_ptr != sq.ring_ptr) {
		rt::munmap(cq.ring_ptr, cq.ring_sz): void;
	};
	rt::close(ring.fd): void;
};
// License: MPL-2.0
// (c) 2021 Alexey Yerin <yyp@disroot.org>
// (c) 2021 Drew DeVault <sir@cmpwn.com>
// (c) 2022 Eyal Sawady <ecs@d2evs.net>
use endian;
use rt;
use types;
use types::c;

fn prep(sq: *sqe, op: op, flags: flags...) void = {
fn prep(sq: *sqe, op: sqe_op, flags: sqe_flags...) void = {
	rt::memset(sq, 0, size(sqe));
	sq.opcode = op;
	for (let i = 0z; i < len(flags); i += 1) {
		sq.flags |= flags[i];
	};
};

fn preprw(
	sqe: *sqe,
	op: op,
	op: sqe_op,
	fd: int,
	addr: nullable *void,
	addr: nullable *opaque,
	length: uint,
	offs: u64,
	flags: flags...
	flags: sqe_flags...
) void = {
	prep(sqe, op, flags...);
	sqe.fd = fd;
	sqe.addr = addr;
	sqe.length = length;
	sqe.off = offs;
};

// Sets the user data field of an [[sqe]]. This is copied to the [[cqe]] and can
// be used to correlate a completion event with the original SQE.
export fn set_user(sqe: *sqe, user_data: *void) void = {
export fn sqe_set_data(sqe: *sqe, user_data: *opaque) void = {
	static assert(size(uintptr) <= size(u64));
	sqe.user_data = user_data: uintptr: u64;
};

// Sets the BUFFER_SELECT flag and sets the desired buffer group. See
// [[provide_buffers]] for configuring buffer groups, and [[get_buffer_id]] to
// retrieve the buffer used from the corresponding [[cqe]].
export fn set_buffer_select(sqe: *sqe, group: u16) void = {
	sqe.flags |= flags::BUFFER_SELECT;
export fn sqe_set_buffer_select(sqe: *sqe, group: u16) void = {
	sqe.flags |= sqe_flags::BUFFER_SELECT;
	sqe.buf_group = group;
};

// Prepares a no-op "operation" for an [[sqe]].
export fn nop(sqe: *sqe, flags: flags...) void = {
	prep(sqe, op::NOP, flags...);
export fn op_nop(sqe: *sqe, flags: sqe_flags...) void = {
	prep(sqe, sqe_op::NOP, flags...);
};

// Prepares a vectored read operation for an [[sqe]].
export fn readv(
export fn op_readv(
	sqe: *sqe,
	fd: int,
	iov: []rt::iovec,
	offs: size,
	flags: flags...
	flags: sqe_flags...
) void = {
	preprw(sqe, op::READV, fd,
	preprw(sqe, sqe_op::READV, fd,
		iov: *[*]rt::iovec, len(iov): uint, offs, flags...);
};

// Prepares a vectored write operation for an [[sqe]].
export fn writev(
export fn op_writev(
	sqe: *sqe,
	fd: int,
	iov: []rt::iovec,
	offs: size,
	flags: flags...
	flags: sqe_flags...
) void = {
	preprw(sqe, op::WRITEV, fd,
	preprw(sqe, sqe_op::WRITEV, fd,
		iov: *[*]rt::iovec, len(iov): uint, offs, flags...);
};

// Prepares a read operation for an [[sqe]].
export fn read(
export fn op_read(
	sqe: *sqe,
	fd: int,
	buf: *void,
	buf: *opaque,
	count: size,
	offs: u64,
	flags: flags...
	flags: sqe_flags...
) void = {
	assert(count <= types::U32_MAX);
	preprw(sqe, op::READ, fd, buf, count: u32, offs, flags...);
	preprw(sqe, sqe_op::READ, fd, buf, count: u32, offs, flags...);
};

// Prepares a write operation for an [[sqe]].
export fn write(
export fn op_write(
	sqe: *sqe,
	fd: int,
	buf: *void,
	buf: *opaque,
	count: size,
	offs: u64,
	flags: flags...
	flags: sqe_flags...
) void = {
	assert(count <= types::U32_MAX);
	preprw(sqe, op::WRITE, fd, buf, count: u32, offs, flags...);
	preprw(sqe, sqe_op::WRITE, fd, buf, count: u32, offs, flags...);
};

// Prepares a read for a fixed buffer previously registered with
// [[register_buffers]]. The buf and count parameters must refer to an address
// which falls within the buffer referenced by the index parameter.
export fn read_fixed(
export fn op_read_fixed(
	sqe: *sqe,
	fd: int,
	buf: *void,
	buf: *opaque,
	count: size,
	index: u16,
	flags: flags...
	flags: sqe_flags...
) void = {
	assert(count <= types::U32_MAX);
	preprw(sqe, op::READ_FIXED, fd, buf, count: u32, 0, flags...);
	preprw(sqe, sqe_op::READ_FIXED, fd, buf, count: u32, 0, flags...);
	sqe.buf_index = index;
};

// Prepares a write for a fixed buffer previously registered with
// [[register_buffers]]. The buf and count parameters must refer to an address
// which falls within the buffer referenced by the index parameter.
export fn write_fixed(
export fn op_write_fixed(
	sqe: *sqe,
	fd: int,
	buf: *void,
	buf: *opaque,
	count: size,
	index: u16,
	flags: flags...
	flags: sqe_flags...
) void = {
	assert(count <= types::U32_MAX);
	preprw(sqe, op::WRITE_FIXED, fd, buf, count: u32, 0, flags...);
	preprw(sqe, sqe_op::WRITE_FIXED, fd, buf, count: u32, 0, flags...);
	sqe.buf_index = index;
};

// Prepares an fsync operation for an [[sqe]]. Note that operations are executed
// in parallel and not are completed in submission order, so an fsync submitted
// after a write may not cause the write to be accounted for by the fsync unless
// [[flags::IO_LINK]] is used.
export fn fsync(
export fn op_fsync(
	sqe: *sqe,
	fd: int,
	fsync_flags: fsync_flags,
	flags: flags...
	fsync_flags: op_fsync_flags,
	flags: sqe_flags...
) void = {
	preprw(sqe, op::FSYNC, fd, null, 0, 0, flags...);
	preprw(sqe, sqe_op::FSYNC, fd, null, 0, 0, flags...);
	sqe.fsync_flags = fsync_flags;
};

// Adds a request to poll a file descriptor for the given set of poll events.
// This will only happen once, the poll request must be submitted with a new SQE
// to re-poll the file descriptor later. The caller must call [[set_user]] to
// to re-poll the file descriptor later. The caller must call [[sqe_set_data]] to
// provide a user data field in order to use [[poll_remove]] to remove this poll
// request later.
export fn poll_add(
export fn op_poll_add(
	sqe: *sqe,
	fd: int,
	poll_mask: uint,
	flags: flags...
	flags: sqe_flags...
) void = {
	preprw(sqe, op::POLL_ADD, fd, null, 0, 0, flags...);
	preprw(sqe, sqe_op::POLL_ADD, fd, null, 0, 0, flags...);
	assert(endian::host == &endian::little); // TODO?
	sqe.poll32_events = poll_mask: u32;
};

// Removes an existing poll request by matching the SQE's user_data field. See
// [[set_user]].
export fn poll_remove(sqe: *sqe, user_data: *void, flags: flags...) void = {
	preprw(sqe, op::POLL_REMOVE, -1, null, 0, 0, flags...);
	set_user(sqe, user_data);
// [[sqe_set_data]].
export fn op_poll_remove(sqe: *sqe, user_data: *opaque, flags: sqe_flags...) void = {
	preprw(sqe, sqe_op::POLL_REMOVE, -1, null, 0, 0, flags...);
	sqe_set_data(sqe, user_data);
};

// Prepares a sendmsg operation for an [[sqe]], equivalent to the sendmsg(2)
// system call.
export fn sendmsg(
export fn op_sendmsg(
	sqe: *sqe,
	fd: int,
	msghdr: *rt::msghdr,
	sendmsg_flags: int,
	flags: flags...
	flags: sqe_flags...
) void = {
	preprw(sqe, op::SENDMSG, fd, msghdr, 0, 0, flags...);
	preprw(sqe, sqe_op::SENDMSG, fd, msghdr, 0, 0, flags...);
	sqe.msg_flags = sendmsg_flags;
};

// Prepares a recvmsg operation for an [[sqe]], equivalent to the recvmsg(2)
// system call.
export fn recvmsg(
export fn op_recvmsg(
	sqe: *sqe,
	fd: int,
	msghdr: *rt::msghdr,
	recvmsg_flags: int,
	flags: flags...
	flags: sqe_flags...
) void = {
	preprw(sqe, op::RECVMSG, fd, msghdr, 0, 0, flags...);
	preprw(sqe, sqe_op::RECVMSG, fd, msghdr, 0, 0, flags...);
	sqe.msg_flags = recvmsg_flags;
};

// Prepares a send operation for an [[sqe]], equivalent to the send(2) system
// call.
export fn send(
export fn op_send(
	sqe: *sqe,
	fd: int,
	buf: *void,
	buf: *opaque,
	count: size,
	send_flags: int,
	flags: flags...
	flags: sqe_flags...
) void = {
	assert(count <= types::U32_MAX);
	preprw(sqe, op::SEND, fd, buf, count: u32, 0, flags...);
	preprw(sqe, sqe_op::SEND, fd, buf, count: u32, 0, flags...);
	sqe.msg_flags = send_flags;
};

// Prepares a recv operation for an [[sqe]], equivalent to the recv(2) system
// call.
export fn recv(
export fn op_recv(
	sqe: *sqe,
	fd: int,
	buf: *void,
	buf: *opaque,
	count: size,
	recv_flags: int,
	flags: flags...
	flags: sqe_flags...
) void = {
	assert(count <= types::U32_MAX);
	preprw(sqe, op::RECV, fd, buf, count: u32, 0, flags...);
	preprw(sqe, sqe_op::RECV, fd, buf, count: u32, 0, flags...);
	sqe.msg_flags = recv_flags;
};

// Prepares a timeout operation for an [[sqe]]. "ts" should be a timespec
// describing the desired timeout, and "events" may optionally be used to define
// a number of completion events to wake after (or zero to wake only after the
// timeout expires). The caller must call [[set_user]] to provide a user data
// timeout expires). The caller must call [[sqe_set_data]] to provide a user data
// field in order to use [[timeout_remove]] to cancel this timeout later.
export fn timeout(
export fn op_timeout(
	sqe: *sqe,
	ts: *rt::timespec,
	events: uint,
	to_flags: timeout_flags,
	flags: flags...
	to_flags: op_timeout_flags,
	flags: sqe_flags...
) void = {
	preprw(sqe, op::TIMEOUT, 0, ts, 1, events, flags...);
	preprw(sqe, sqe_op::TIMEOUT, 0, ts, 1, events, flags...);
	sqe.timeout_flags = to_flags;
};

// Removes an existing timeout request by matching the SQE's user_data field.
// See [[set_user]].
export fn timeout_remove(
// See [[sqe_set_data]].
export fn op_timeout_remove(
	sqe: *sqe,
	user_data: *void,
	to_flags: timeout_flags,
	flags: flags...
	user_data: *opaque,
	to_flags: op_timeout_flags,
	flags: sqe_flags...
) void = {
	preprw(sqe, op::TIMEOUT_REMOVE, 0, user_data, 0, 0, flags...);
	preprw(sqe, sqe_op::TIMEOUT_REMOVE, 0, user_data, 0, 0, flags...);
	sqe.timeout_flags = to_flags;
};

// Updates an existing timeout request by matching the SQE's user_data field.
// See [[set_user]].
export fn timeout_update(
// See [[sqe_set_data]].
export fn op_timeout_update(
	sqe: *sqe,
	user_data: *void,
	user_data: *opaque,
	ts: *rt::timespec,
	events: uint,
	to_flags: timeout_flags,
	flags: flags...
	to_flags: op_timeout_flags,
	flags: sqe_flags...
) void = {
	preprw(sqe, op::TIMEOUT_REMOVE, 0, user_data, 0, events, flags...);
	sqe.timeout_flags = to_flags | timeout_flags::UPDATE;
	preprw(sqe, sqe_op::TIMEOUT_REMOVE, 0, user_data, 0, events, flags...);
	sqe.timeout_flags = to_flags | op_timeout_flags::UPDATE;
	sqe.addr2 = ts;
};

// Prepares a timeout operation for an [[sqe]] which is linked to the previous
// SQE, effectively setting an upper limit on how long that SQE can take to
// complete. "ts" should be a timespec describing the desired timeout. The
// caller must call [[set_user]] to provide a user data field in order to use
// caller must call [[sqe_set_data]] to provide a user data field in order to use
// [[timeout_remove]] to cancel this timeout later.
export fn link_timeout(
export fn op_link_timeout(
	sqe: *sqe,
	ts: *rt::timespec,
	to_flags: timeout_flags,
	flags: flags...
	to_flags: op_timeout_flags,
	flags: sqe_flags...
) void = {
	preprw(sqe, op::LINK_TIMEOUT, 0, ts, 1, 0, flags...);
	preprw(sqe, sqe_op::LINK_TIMEOUT, 0, ts, 1, 0, flags...);
	sqe.timeout_flags = to_flags;
};

// Prepares a socket accept operation for an [[sqe]]. Equivalent to accept4(2).
export fn accept(
export fn op_accept(
	sqe: *sqe,
	fd: int,
	addr: nullable *rt::sockaddr,
	addrlen: nullable *uint,
	aflags: uint,
	flags: flags...
	flags: sqe_flags...
) void = {
	preprw(sqe, op::ACCEPT, fd, addr, 0, 0, flags...);
	preprw(sqe, sqe_op::ACCEPT, fd, addr, 0, 0, flags...);
	sqe.accept_flags = aflags;
	sqe.addr2 = addrlen;
};

// Prepares an [[sqe]] operation which opens a file. The path must be a C
// string, i.e. NUL terminated; see [[strings::to_c]].
export fn openat(
export fn op_openat(
	sqe: *sqe,
	dirfd: int,
	path: *const char,
	path: *const c::char,
	oflags: int,
	mode: uint,
	flags: flags...
	flags: sqe_flags...
) void = {
	preprw(sqe, op::OPENAT, dirfd, path, mode, 0, flags...);
	preprw(sqe, sqe_op::OPENAT, dirfd, path, mode, 0, flags...);
	sqe.open_flags = oflags: u32;
};

// Prepares an [[sqe]] operation which closes a file descriptor.
export fn close(sqe: *sqe, fd: int, flags: flags...) void = {
	preprw(sqe, op::CLOSE, fd, null, 0, 0, flags...);
export fn op_close(sqe: *sqe, fd: int, flags: sqe_flags...) void = {
	preprw(sqe, sqe_op::CLOSE, fd, null, 0, 0, flags...);
};

// Prepares an [[sqe]] operation which provides a buffer pool to the kernel.
// len(pool) must be equal to nbuf * bufsz. See [[set_buffer_select]] to use
// the buffer pool for a subsequent request.
export fn provide_buffers(
export fn op_provide_buffers(
	sqe: *sqe,
	group: u16,
	pool: []u8,
	nbuf: size,
	bufsz: size,
	bufid: u16,
	flags: flags...
	flags: sqe_flags...
) void = {
	assert(len(pool) == nbuf * bufsz);
	preprw(sqe, op::PROVIDE_BUFFERS, nbuf: int, pool: *[*]u8,
	preprw(sqe, sqe_op::PROVIDE_BUFFERS, nbuf: int, pool: *[*]u8,
		bufsz: uint, bufid: uint, flags...);
	sqe.buf_group = group;
};

// Removes buffers previously registered with [[provide_buffers]].
export fn remove_buffers(
export fn op_remove_buffers(
	sqe: *sqe,
	nbuf: size,
	group: u16,
	flags: flags...
	flags: sqe_flags...
) void = {
	preprw(sqe, op::REMOVE_BUFFERS, nbuf: int, null, 0, 0, flags...);
	preprw(sqe, sqe_op::REMOVE_BUFFERS, nbuf: int, null, 0, 0, flags...);
	sqe.buf_group = group;
};
// License: MPL-2.0
// (c) 2021 Alexey Yerin <yyp@disroot.org>
// (c) 2021 Drew DeVault <sir@cmpwn.com>
// (c) 2021-2022 Eyal Sawady <ecs@d2evs.net>
use errors;

// Returned when buffer pool use was configured for an [[sqe]], but there are no
// buffers available.
export type nobuffers = !void;

// All errors which may be returned by this module.
export type error = !(errors::error | nobuffers);

// Converts an [[error]] into a human-readable string.
export fn strerror(err: error) const str = {
	match (err) {
	case nobuffers =>
		return "Buffer pool exhausted";
	case let err: errors::error =>
		return errors::strerror(err);
	};
};

// The maximum value for the first parameter of [[setup]].
// The maximum value for the first parameter of [[queue_init_params]].
export def MAX_ENTRIES: uint = 4096;

def CQE_BUFFER_SHIFT: u32 = 16;
def OFF_SQ_RING: u64 = 0;
def OFF_CQ_RING: u64 = 0x8000000;
def OFF_SQES: u64 = 0x10000000;

// An io_uring [[sqe]] operation.
export type op = enum u8 {
export type sqe_op = enum u8 {
	NOP,
	READV,
	WRITEV,
	FSYNC,
	READ_FIXED,
	WRITE_FIXED,
	POLL_ADD,
	POLL_REMOVE,
	SYNC_FILE_RANGE,
	SENDMSG,
	RECVMSG,
	TIMEOUT,
	TIMEOUT_REMOVE,
	ACCEPT,
	ASYNC_CANCEL,
	LINK_TIMEOUT,
	CONNECT,
	FALLOCATE,
	OPENAT,
	CLOSE,
	FILES_UPDATE,
	STATX,
	READ,
	WRITE,
	FADVISE,
	MADVISE,
	SEND,
	RECV,
	OPENAT2,
	EPOLL_CTL,
	SPLICE,
	PROVIDE_BUFFERS,
	REMOVE_BUFFERS,
	TEE,
};

// Flags for an [[sqe]].
export type flags = enum u8 {
export type sqe_flags = enum u8 {
	NONE = 0,
	// Use fixed fileset
	FIXED_FILE = 1 << 0,
	// Issue after inflight IO
	IO_DRAIN = 1 << 1,
	// Links next sqe
	IO_LINK = 1 << 2,
	// Like LINK, but stronger
	IO_HARDLINK = 1 << 3,
	// Always go async
	ASYNC = 1 << 4,
	// Select buffer from sqe.buf_group
	BUFFER_SELECT = 1 << 5,
};

// Flags for an fsync operation.
export type fsync_flags = enum u32 {
export type op_fsync_flags = enum u32 {
	NONE = 0,
	DATASYNC = 1 << 0,
};

// Flags for a timeout operation.
export type timeout_flags = enum u32 {
export type op_timeout_flags = enum u32 {
	NONE = 0,
	// If set, the timeout will be "absolute", waiting until CLOCK_MONOTONIC
	// reaches the time defined by the timespec. If unset, it will be
	// interpted as a duration relative to the I/O submission.
	ABS = 1 << 0,
	// When combined with [[op::TIMEOUT_REMOVE]], causes the submission to
	// update the timer rather than remove it.
	UPDATE = 1 << 1,
};

// Flags for a splice operation.
export type splice_flags = enum u32 {
export type op_splice_flags = enum u32 {
	NONE = 0,
	F_FD_IN_FIXED = 1 << 31,
};

// Flags for a [[cqe]].
export type cqe_flags = enum u32 {
	NONE = 0,
	F_BUFFER = 1 << 0,
	F_MORE = 1 << 1,
};

// A submission queue entry.
export type sqe = struct {
	opcode: op,
	flags: flags,
	opcode: sqe_op,
	flags: sqe_flags,
	ioprio: u16,
	fd: i32,
	union {
		off: u64,
		addr2: nullable *void,
		addr2: nullable *opaque,
	},
	union {
		addr: nullable *void,
		addr: nullable *opaque,
		splice_off_in: u64,
	},
	length: u32,
	union {
		rw_flags: int,
		fsync_flags: fsync_flags,
		fsync_flags: op_fsync_flags,
		poll_events: u16,
		poll32_events: u32,
		sync_range_flags: u32,
		msg_flags: int,
		timeout_flags: timeout_flags,
		timeout_flags: op_timeout_flags,
		accept_flags: u32,
		cancel_flags: u32,
		open_flags: u32,
		statx_flags: u32,
		fadvise_advice: u32,
		splice_flags: splice_flags,
		splice_flags: op_splice_flags,
	},
	user_data: u64,
	union {
		struct {
			union {
				buf_index: u16,
				buf_group: u16,
			},
			personality: u16,
			splice_fd_in: i32,
		},
		pad2: [3]u64,
	},
};

// A completion queue entry.
export type cqe = struct {
	user_data: u64,

	// Consider using [[cqe_result]] instead.
	res: i32,

	flags: cqe_flags,
};

// Filled with the offset for mmap(2)
export type sqring_offsets = struct {
export type sq_offsets = struct {
	head: u32,
	tail: u32,
	ring_mask: u32,
	ring_entries: u32,
	flags: u32,
	dropped: u32,
	array: u32,
	resv1: u32,
	resv2: u64,
};

// Flags for the sq ring.
export type sqring_flags = enum u32 {
export type sq_flags = enum u32 {
	NONE = 0,
	// Needs io_uring_enter wakeup
	NEED_WAKEUP = 1 << 0,
	// CQ ring is overflown
	CQ_OVERFLOW = 1 << 1,
};

// Filled with the offset for mmap(2)
export type cqring_offsets = struct {
export type cq_offsets = struct {
	head: u32,
	tail: u32,
	ring_mask: u32,
	ring_entries: u32,
	overflow: u32,
	cqes: u32,
	flags: u32,
	resv1: u32,
	resv2: u64,
};

// Flags for the cq ring.
export type cqring_flags = enum u32 {
export type cq_flags = enum u32 {
	NONE = 0,
	EVENTFD_DISABLED = 1 << 0,
};

// Flags for setup operation.
export type setup_flags = enum u32 {
export type ring_setup_flags = enum u32 {
	NONE = 0,
	// io_context is polled
	IOPOLL = 1 << 0,
	// SQ poll thread
	SQPOLL = 1 << 1,
	// sq_thread_cpu is valid
	SQ_AFF = 1 << 2,
	// App defines CQ size
	CQSIZE = 1 << 3,
	// Clamp SQ/CQ ring sizes
	CLAMP = 1 << 4,
	// Attach to existing wq
	ATTACH_WQ = 1 << 5,
	// Start with ring disabled
	R_DISABLED = 1 << 6,
};

// Parameters for [[setup]]. Partially completed by the kernel.
export type params = struct {
export type ring_params = struct {
	sq_entries: u32,
	cq_entries: u32,
	flags: setup_flags,
	flags: ring_setup_flags,
	sq_thread_cpu: u32,
	sq_thread_idle: u32,
	features: features,
	features: ring_features,
	wq_fd: u32,
	resv: [3]u32,
	sq_off: sqring_offsets,
	cq_off: cqring_offsets,
	sq_off: sq_offsets,
	cq_off: cq_offsets,
};

// Features supported by the kernel.
export type features = enum u32 {
export type ring_features = enum u32 {
	NONE = 0,
	SINGLE_MMAP = 1 << 0,
	NODROP = 1 << 1,
	SUBMIT_STABLE = 1 << 2,
	RW_CUR_POS = 1 << 3,
	CUR_PERSONALITY = 1 << 4,
	FAST_POLL = 1 << 5,
	POLL_32BITS = 1 << 6,
};

// Flags for enter operation.
export type enter_flags = enum uint {
type enter_flags = enum uint {
	NONE = 0,
	GETEVENTS = 1 << 0,
	SQ_WAKEUP = 1 << 1,
	SQ_WAIT = 1 << 2,
};

// Register operations.
export type regop = enum uint {
export type ring_register_op = enum uint {
	REGISTER_BUFFERS,
	UNREGISTER_BUFFERS,
	REGISTER_FILES,
	UNREGISTER_FILES,
	REGISTER_EVENTFD,
	UNREGISTER_EVENTFD,
	REGISTER_FILES_UPDATE,
	REGISTER_EVENTFD_ASYNC,
	REGISTER_PROBE,
	REGISTER_PERSONALITY,
	UNREGISTER_PERSONALITY,
	REGISTER_RESTRICTIONS,
	REGISTER_ENABLE_RINGS,
};

// Information for a REGISTER_FILES_UPDATE operation.
export type files_update = struct {
export type ring_files_update = struct {
	offs: u32,
	resv: u32,
	fds: *int,
};

// Flags for a probe operation.
export type op_flags = enum u16 {
	NONE = 0,
	SUPPORTED = 1 << 0,
};

// REGISTER_PROBE operation details.
export type probe_op = struct {
	op: u8,
	resv: u8,
	flags: op_flags,
	resv2: u32,
};

// Summary of REGISTER_PROBE results.
export type probe = struct {
	last_op: u8,
	ops_len: u8,
	resv: u16,
	resv2: [3]u32,
	ops: [*]probe_op,
};
// // Flags for a probe operation.
// export type op_probe_flags = enum u16 {
// 	NONE = 0,
// 	SUPPORTED = 1 << 0,
// };
// 
// // REGISTER_PROBE operation details.
// export type probe_op = struct {
// 	op: u8,
// 	resv: u8,
// 	flags: op_probe_flags,
// 	resv2: u32,
// };
// 
// // Summary of REGISTER_PROBE results.
// export type probe = struct {
// 	last_op: u8,
// 	ops_len: u8,
// 	resv: u16,
// 	resv2: [3]u32,
// 	ops: [*]probe_op,
// };

// Details for a REGISTER_RESTRICTIONS operation.
export type restriction = struct {
	opcode: resop,
export type ring_register_restriction_details = struct {
	opcode: ring_register_restriction_op,
	union {
		register_op: regop,
		sqe_op: op,
		flags: flags,
		register_op: ring_register_op,
		sqe_op: sqe_op,
		flags: sqe_flags,
	},
	resv: u8,
	resv2: [3]u32,
};

// Opcode for a [[restriction]].
export type resop = enum u16 {
export type ring_register_restriction_op = enum u16 {
	NONE = 0,
	// Allow an io_uring_register(2) opcode
	REGISTER_OP = 0,
	// Allow an sqe opcode
	SQE_OP = 1,
	// Allow sqe flags
	SQE_FLAGS_ALLOWED = 2,
	// Require sqe flags (these flags must be set on each submission)
	SQE_FLAGS_REQUIRED = 3,
};

// State for an io_uring.
export type io_uring = struct {
	sq: sq,
	cq: cq,
	fd: int,
	flags: setup_flags,
	features: features,
	flags: ring_setup_flags,
	features: ring_features,
};

// Submission queue state.
export type sq = struct {
	khead: *uint,
	ktail: *uint,
	kring_mask: *uint,
	kring_entries: *uint,
	kflags: *sqring_flags,
	kflags: *sq_flags,
	kdropped: *uint,
	array: *[*]uint,
	sqes: *[*]sqe,
	sqe_head: uint,
	sqe_tail: uint,
	ring_sz: size,
	ring_ptr: *void,
	ring_ptr: *opaque,
};

// Completion queue state.
export type cq = struct {
	khead: *uint,
	ktail: *uint,
	kring_mask: *uint,
	kring_entries: *uint,
	kflags: *cqring_flags,
	kflags: *cq_flags,
	koverflow: *uint,
	cqes: *[*]cqe,
	ring_sz: size,
	ring_ptr: *void,
	ring_ptr: *opaque,
};